Total Synthesis of Cyclosporine: Access to *N*-Methylated Peptides via Isonitrile Coupling Reactions

Xiangyang Wu, Jennifer L. Stockdill, Ping Wang, Samuel J. Danishefsky* J. Am. Chem. Soc. 2010, 132, 4098-4100

Current Literature March 27, 2010

Li, X.; Danishefsky, S. J. J. Am. Chem. Soc. 2008, 130, 5446-5448

"concerted pseudopericyclic [1,3]-acyl rearrangement"

"Formamidine Carboxylate Mixed Anhydride"

Jones, G. O.; Li, X.; Hayden, A. E.; Houk, K., N.; Danishefsky, S. J. Org. Lett. 2008, 10, 4093-4096.

Adam Hoye @ Wipf Group

Probing reaction conditions

Li, X.; Danishefsky, S. J. J. Am. Chem. Soc. 2008, 130, 5446-5448

Application to asparagine-linked glycopeptides

N-Formyl imide manipulations

Further functionalization

Li, X.; Danishefsky, S. J. J. Am. Chem. Soc. 2008, 130, 5446-5448

Mechanistic investigations

Li, X.; Yuan, Y.; Kan, C.; Danishefsky, S. J. J. Am. Chem. Soc. 2008, 130, 13225-13227

Iterative isonitrile couplings

Li, X.; Yuan, Y.; Kan, C.; Danishefsky, S. J. J. Am. Chem. Soc. 2008, 130, 13225-13227

Interception of FCMA

Sulfur effect

oxo-FCMA formation and rearrangement

Yuan, Y.; Zhu, J.; Li, X.; Wu, X.; Danishefsky, S. J. Tetrahedron Lett. 2009, 50, 2329-2333

Sulfur effect

Substrate scope

Rao, Y.; Li, X.; Danishefsky, S. J. J. Am. Chem. Soc. 2009, 131, 12924-12926

Esterification O н DCM Me FmocHN FmocHN C_≷N—*t*-Bu + C≡N⁺-*t*-Bu SH FmocHN RT м́е Ме Ŵе Ŵе 43% O-HMe Me BocHN Me 0 BnO₂C `Me O 64%

Tertiary amide formation

- · Fungal metabolite from *Tolypocladium inflatum gams*
- · Initially isolated in early 1960s at Sandoz (later Novartis) in Basel, Switz.
- · Narrow antibiotic activities, shelved until 1970s
- Crude fungal extract inhibited lymphocyte proliferation w/out affecting somatic cells
- · Structure reported in 1976 (chem degradation, NMR, X-ray)
- Dr. Thomas E. Starzl (Univ. of Pittsburgh) established clinical utility of cyclosporine in liver transplants (preventing organ rejection) in 1982
 -landmarks around Pitt campus
- Acts by inhibiting cytokines (via calcineurin) that stimulate growth, differentiation, and survival of T-cells.

Corey, E. J.; Czakó, B.; Kürti, L. Molecules and Medicine; Wiley: Hoboken, NJ, 2007; p. 124

Previous syntheses of cyclosporine A

- · Total synthesis reported by Wenger in 1984
- · Unusual amino acid (MeBmt) critical to activity; considerable attention, synthetically
- Bioavailability (proteolysis) dependent on N-Me amide pattern in 7 of 11 amide bonds (SAR crucial) (Wenger, Rich, Galpin)

Synthesis: Wenger, R. M. *Helv. Chim. Acta.* 1984, 67, 502-525
SAR studies: Wenger, R. M. *Angew. Chem. Ind. Ed. Engl.* 1985, 24, 77-138
Colucci, W. J.; Tung, R. D.; Petri, J. A., Rich, D. H. *J. Org. Chem.* 1990, 55, 2895-2903
Rich, D. H.; Sun, C.-Q.; Guillaume, D.; Evans, D. A.; Weber, A. E. *J. Med. Chem.* 1989, 32, 1982-1987
Galpin, I. J.; Mohammed, A. K. A.; Patel, A. *Tetrahedron* 1988, 44, 1783-1794

Retrosynthetic analysis

Fragment A

Grieco, P. A.; Bahsas, A. J. Org. Chem. 1987, 52, 5746-5749

Fragment B

Adam Hoye @ Wipf Group

Evans, D. A.; Weber, A. E. J. Am. Chem. Soc. 1986, 108, 6757-6761

Page 19 of 24

Completion of cyclosporine

Completion of cyclosporine

19 steps (longest linear) 3.5%* overall yield

Conclusions

- Synthesis of cyclosporin in a fashion that allows for more detailed mapping of SAR
- Excellent showcase of methodology- power and diversity (*N*-formyl imide and acyl transfer chemistry)
- · Thiol effect in mechanism (acyl donor capabilities)
- · Diversity of *N*-formyl imide products

"We note in passing that amines, isonitriles, and thioacids are very old functional groups which go back to the beginnings of organic chemistry. The amide forming construction described here could, in principle, have been conducted in 1909 without difficulty. It is not unlikely that careful mechanistically based revisitation of the foundations of organic chemistry might yield additional surprises of considerable value"